
○E

Super-Efficient Cross-Correlation (SEC-C):
A Fast Matched Filtering Code Suitable
for Desktop Computers

by Nader Shakibay Senobari, Gareth J. Funning,
Eamonn Keogh, Yan Zhu, Chin-Chia Michael Yeh,
Zachary Zimmerman, and Abdullah Mueen

ABSTRACT

We present a new method to accelerate the process of matched
filtering (template matching) of seismic waveforms by efficient
calculation of (cross-) correlation coefficients. The cross-
correlation method is commonly used to analyze seismic data,
for example, to detect repeating or similar seismic waveform
signals, earthquake swarms, foreshocks, aftershocks, low-
frequency earthquakes (LFEs), and nonvolcanic tremor. Recent
growth in the density and coverage of seismic instrumentation
demands fast and accurate methods to analyze the correspond-
ing large volumes of data generated. Historically, there are two
approaches used to perform matched filtering; one using the
time domain and the other the frequency domain. Recent
studies reveal that time domain matched filtering is memory
efficient and frequency domain matched filtering is time effi-
cient, assuming the same amount of computational resources.
We show that our super-efficient cross-correlation (SEC-C)
method—a frequency domain method that optimizes compu-
tations using the overlap–add method, vectorization, and fast
normalization—is not only more time efficient than existing
frequency domain methods when run on the same number
of central processing unit (CPU) threads but also more
memory efficient than time domain methods in our test cases.
For example, using 30 channels of data with a sample rate of
50 Hz and 30 templates, each with durations of 8 s, SEC-C
uses only 2.3 GB of memory whereas other frequency domain
codes use three times more and parallelized time-domain codes
use ∼30% more. We have implemented a precise, fully normal-
ized version of SEC-C that removes the mean of the data in each
sliding window, and thus can be applied to raw seismic data.
Another strength of the SEC-C method is that it can be used
to search for repeating seismic events in a concatenated stack of
individual event waveforms. In this use case, our method is more
than one order of magnitude faster than conventional methods.
The SEC-C method does not require specialized hardware to
achieve its computation speed; instead it exploits algorithmic

ideas that are both time- and memory-efficient and are thus suit-
able for use on off-the-shelf desktop machines.

Electronic Supplement: Additional figures and MATLAB codes
(matched filter algorithm).

INTRODUCTION

Matched filtering, also known as template matching, similarity
search, or “query-by-content”, is a commonly used method in
seismology. The matched portions of a continuous waveform
data set with a template waveform can be identified by calculat-
ing normalized correlation coefficients, usually referred to by
seismologists as zero-lag cross-correlation coefficients (CCCs).
By choosing appropriate thresholds for these CCC values, we
can detect similar or repeating patterns in those continuous data.
Template matching is often used for detecting seismic events
with low signal-to-noise waveforms within large volumes of con-
tinuous data. A high-detection capability along with applicability
to a wide variety of seismic source types makes template match-
ing a powerful tool for seismologists. For example, template
matching can be used to detect seismic events such as foreshocks,
aftershocks, icequakes, repeating earthquakes (REs), volcanic
earthquakes, geothermal seismic activity, swarms, low-frequency
earthquakes (LFEs), and nonvolcanic tremor to monitor nuclear
explosions and to identify seismic triggering (e.g., Nadeau et al.,
1995; Gibbons and Ringdal, 2006; Shelly et al., 2007; Peng and
Zhao, 2009; Allstadt and Malone, 2014; Meng and Peng, 2014;
Skoumal et al., 2015; Kato et al., 2016; Frank et al., 2017).

In addition to the event detection applications explained
above, cross-correlation analysis has become an important part
of determining event locations and relocations in the last two
decades (e.g., Waldhauser and Ellsworth, 2000; Hauksson and
Shearer, 2005; Schaff andWaldhauser, 2005). The relative arrival
time of seismic phases to seismic stations for each event in
a group of nearby events is the main input information for re-
location algorithms (e.g., Waldhauser and Ellsworth, 2000;
Hauksson and Shearer, 2005) and is traditionally estimated
by comparing the picked phase arrival times from earthquake
catalogs. The picked phase arrival times usually contain errors
due to station noise and uncertainty in the phase picking

doi: 10.1785/0220180122 Seismological Research Letters Volume XX, Number XX – 2018 1

SRL Early Edition

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220180122/4541826/srl-2018122.1.pdf
by University of California-Riverside, 18446
on 07 November 2018

algorithm or human error. On the other hand, CCC methods
can precisely calculate the relative time shift between individual
waveforms, as the CCC between them is maximized when two
waveforms are aligned. These methods can also be used to pre-
cisely detect temporal velocity changes in the Earth’s crust (e.g.,
Poupinet et al., 1984; Schaff and Beroza, 2004; Thomas et al.,
2012) or even the Earth’s inner core (Tkalčić et al., 2013). Pre-
cise information about relative phase arrival times also plays an
important role in seismic tomography (e.g., Zhang and Thurber,
2003). Therefore, a fast method for performing template match-
ing in continuous data and for pairwise cross correlations of
individual waveforms could potentially lead to computation
time improvements in many branches of seismology.

For most earthquake detection and (re)location applica-
tions (e.g., aftershocks, foreshocks, swarms, event relocations),
choosing a waveform template can be straightforward, for
example, selecting a well-recorded event within an area of
interest (e.g., Shelly et al., 2007; Schaff and Waldhauser, 2010;
Meng and Peng, 2014). However, in cases where it is known
that a specific type of event repeats over time (e.g., REs or
LFEs), but cannot be identified a priori, seismologists have used
different techniques such as array processing (e.g., Frank and
Shapiro, 2014), pairwise similarity search (also known as “au-
tocorrelation”; e.g., Brown et al., 2008), or careful visualization
of seismic data (e.g., Shelly et al., 2009) to identify templates.

The duration of continuous data available for investiga-
tion by template matching is of the order of decades (e.g.,
Shelly, 2017). If, for example, we could reduce the run
time of a template matching analysis from 300 to 100 s for
each day of seismic data, this would add up to ∼8 days of com-
putation time savings for one decade of seismic data. In other
words, given the power law increase in the volume of waveform
data archived in seismic data repositories (e.g., Incorporated
Research Institutions for Seismology Data Management
Center [IRIS-DMC]; Hutko, et al., 2017), there is a high
demand for fast, precise, and user-friendly seismic analysis
methods.

For a single waveform of continuous seismic data with
n samples and a single template with a length of m samples, the
time complexity of template matching in the time domain is
O��n −m�m�, or approximately O�nm� when n ≫ m. In the
frequency domain, the time complexity is O�n log n� (Lewis,
1995). The normalization of computed CCCs adds an addi-
tional delay to the computational run time. The relative com-
putational time complexity between these two methods then
can be determined by comparing the size of log�n� with m.

In this article, whenever we talk about time complexity
comparisons between the time- and frequency-domain methods,
we assume that these two methods are written in a common
programming language and use the same computational resour-
ces (e.g., a single thread of a central processing unit [CPU]).
For seismological applications, a template waveform usually con-
tains several seconds of seismic data (i.e.,m ≈ 10–1000 samples)
and the data set to be compared to is typically weeks, months,
or years of seismic data that are usually stored as daily continuous
seismic data files (i.e., n ≈ 106–107 samples per day). This

implies that the frequency domain method should be the faster
method unless a template with a short length (e.g., less than a
second, for one day of data with 50 Hz sample rate) is used.
On the other hand, frequency domain methods, which typically
involve the template being padded with zeros at least to the
length of the comparison data, require much more memory
(e.g., Lewis, 1995; Chamberlain et al, 2018). Despite not being
time efficient with respect to frequency domain methods, time-
domain template matching is often considered suitable for CPU
and graphics processing unit (GPU) parallelization as the imple-
mentation is straightforward and memory efficient (e.g., Meng
et al., 2012; Mu et al, 2017; Beaucé et al., 2018). Here we dem-
onstrate, using several algorithmic improvements, a single CPU
frequency domain method that we call super-efficient cross-
correlation (SEC-C). It is equivalent in speed to modern CPU-
parallelized codes running on more than 10 processor cores, and
only a few times slower than GPU parallelized codes. Such a
code, running on a regular desktop computer with a few proc-
essor cores, can be a powerful tool for template matching that in
some cases (e.g., long duration of templates, 100 Hz sample
rates) is as powerful as GPU parallelized codes without requiring
extensive memory or additional hardware.

SEC-C is fast, memory efficient, and, for a minimal in-
crease in computation time, can be precise to machine preci-
sion. A fully normalized version of the algorithm removes the
mean of the data for each sliding window internally and there-
fore can be used for template matching of raw seismic data
(Ⓔ Fig. S1, available in the electronic supplement to this
article). Several of the parallelized methods mentioned above
require prior operations on the data, or specific conditions or
assumptions (e.g., removing the mean from the data, low vari-
ability on the amplitude, or using single-precision floating
points; Beaucé et al., 2018; Chamberlain et al., 2018; Mu et al.,
2017; respectively). Chamberlain et al. (2018) reported that
using single-precision floating points for normalization calcu-
lations can introduce errors in the CCC results of up to 20%
for a large earthquake within low-amplitude noise. Beaucé et al.
(2018) tested the removal of the mean from the data from an
Mw 7.8 earthquake and showed that the CCC error is 1.2%.
SEC-C is capable of outputting both the CCC sum as well as
the individual CCC for each channel without introducing
extra run time. The latter case is useful when the moveout of
P-wave arrivals is not precisely known and when the stations
are far from each other (i.e., the moveout is very large), mean-
ing that matched filtering at individual stations is a better
option.

Our aim in this study is to calculate fast, memory efficient,
and precise CCCs for template matching applications in seis-
mology. SEC-C employs a combination of several speed-up
techniques such as the fast Fourier transform (FFT), the over-
lap–add method (Rabiner and Gold, 1975), vectorization
tricks, and a fast normalization method inspired by Mueen’s
algorithm for similarity search (MASS; Mueen et al., 2015).
This method can be coded in any array programming com-
puter language (e.g., MATLAB, see Data and Resources;
Fortran 90, R, the NumPy extension to Python). It does not

2 Seismological Research Letters Volume XX, Number XX – 2018

SRL Early Edition

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220180122/4541826/srl-2018122.1.pdf
by University of California-Riverside, 18446
on 07 November 2018

require any special libraries except for the FFT. The SEC-C
MATLAB code is provided in the Ⓔ electronic supplement.
The MATLAB code along with a Python version is also avail-
able in a GitHub repository (see Data and Resources).

THE ALGORITHM

The Traditional Time-Domain Sliding Window
Cross-Correlation Method
Assume that we have a seismic template waveform X with a
length of m samples and a continuous time series Y with a
length of n samples. A traditional brute force way of performing
template matching is to calculate the CCC of X with a sub-
window of Y that has the same length (i.e., of m samples) and
repeat this procedure with a sliding subwindow shifted by one
sample or some small interval (e.g., 0.02 s; Shelly et al., 2009).
Assume that Y i is the ith subwindow of Y , then the CCC for
any subwindow is defined as below:

EQ-TARGET;temp:intralink-;df1;52;529CCCi �
�X − X̄� · �Y i−Y i���

��X − X̄� · �X − X̄����Y i −Y i� · �Y i −Y i��
q : �1�

in which the bar symbol above X and Y i refers to the mean
values for each and the dots indicate scalar (dot) products. For
example, X̄ refers to a vector with a length of m in which each
component is the mean of X . We assume that the local mean
is already removed from the data and templates can thus be
reduced to the equation below:

EQ-TARGET;temp:intralink-;df2;52;399CCCi �
X · Y i��������������������������������

�X · X��Y i · Y i�
p : �2�

This procedure typically requires looping of this calculation over
many subwindows of Y . For most real seismological applications,
this needs to be repeated for multiple stations with multiple com-
ponents and several templates. This becomes time consuming for
a long continuous waveform and with the sample rates required
for most seismic applications (e.g., usually greater than 20 Hz).
For example, calculating CCCs for one day of continuous wave-
form with a 100 Hz sample rate and sliding for a 0.02 s interval
for 10 stations, three components and for 20 templates, requires
the evaluation of equation (1) 24�hrs�× 60�min�× 60�s�× 50
(CC evaluations per second) × 10 (stations) × 3 (components)
× 20 (templates) = ∼2:6 × 109 times. For one year of data, the
number of calculations increases to ∼1012. The time complexity
of equation (1) has a linear relationship with template length (m),
and as m increases the total computational time increases pro-
portionately. To tackle the run time problem of computing many
nested loops, recent time-domain-based methods have focused on
parallelization using either CPU clusters or GPU architecture
that can compute this calculation using hundreds to thousands
of threads simultaneously (e.g., Meng et al., 2012; Mu et al.,
2017; Beaucé et al., 2018). However, performing a real-world case
of template matching using a regular desktopmachine in the time
domain is still a challenge and out of reach.

The alternative way of performing template matching is
to use the frequency domain to calculate the numerator of
equation (2) without looping over sliding windows. Here, we
give a brief introduction to frequency domain template match-
ing, using the CCC metric.

The Traditional Frequency Domain Cross-Correlation
Method
We first define two vectors with the same length, extended to
the next highest power of two:
1. X ′ = reverse X and append (n� l −m) zeros to the end,
2. Y ′ = append Y with l zeros at the end.

Here, l is the number of zeros that needs to be added to
the Y to make the length of Y a power of two. In the past,
the FFT algorithm performed optimally when the length
of the data was a power of two. New FFT libraries, how-
ever, can calculate the FFT efficiently if the prime factors
are small (e.g., the Fastest Fourier Transform in the West
(FFTW); Frigo and Johnson, 2005). Therefore, depend-
ing on the FFT libraries and n, l can be chosen to be 0 or
any number that can make n� l a power of two. Then,
the convolution of X ′ and Y ′ would produce all the pos-
sible numerators of equation (1) (Lewis, 1995):

EQ-TARGET;temp:intralink-;df3;323;469�X ′ � Y ′�i � X · Y i: �3�
As mentioned above, subscript i is referred to here as the
ith subwindow. We call this vector the sliding dot product
of X and Y , sdp�X; Y �. We can calculate this sliding dot
product using the FFT method as below (Lewis, 1995;
Smith, 1997):

3. sdp�XY � :� �X ′ � Y ′� � FFT−1�FFT�X ′� · FFT�Y ′��
The three procedures above allow us to calculate the nu-
merator of equation (1).

Algorithms for calculating the denominator of equation (2)
(i.e., the normalization part) may vary from method to method.
As the time complexity of the FFT isO�n log n�, if we assume a
normalization with a linear time complexity, then the overall
time complexity of the frequency domain method isO�n log n�.
If we compare this to the time domain time complexity (i.e.,
O�nm�), when m is greater than log n, the frequency domain
approach becomes a better choice of method. For a single day
of seismic data, depending on the sample rate (e.g., from 20 to
100 Hz), log n varies between ∼14 and 16. This means that
the frequency domain approach is more efficient if m > 16—
corresponding to a template length of 0.32 s when a sample rate
of 50 Hz is assumed. The exact template length m at which the
frequency domain becomes more time efficient depends on the
hardware and the FFT libraries (Smith, 1997). For most seismic
applications, however, template lengths of more than several sec-
onds of data are required, implying that methods that make use
of the frequency domain are more time efficient. (Note as we
mentioned above our assumption is that both methods use the
same amount of CPU resources, e.g., one CPU thread.)

On the other hand, frequency domain methods are not
typically memory efficient. During the procedure (1), the tem-

Seismological Research Letters Volume XX, Number XX – 2018 3

SRL Early Edition

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220180122/4541826/srl-2018122.1.pdf
by University of California-Riverside, 18446
on 07 November 2018

plate length increases at least to the length of the data (i.e., n if
l is assumed to be zero). Our tests (see the SEC-C Memory
Efficiency section) show that these types of frequency domain
methods (e.g., EQcorrscan; Chamberlain et al., 2018) can
almost exceed the memory of a desktop computer with 16 GB
of RAM in some use cases (e.g., using 40 templates for 10 sta-
tions with three components with a sample rate of 50 Hz and
template length of 8 s). Even if a test case includes a small num-
ber of channels of data (not 30 channels as above), having a
memory efficient method allows the user to perform matching
for more templates at the same time and therefore at a reduced
run time overall. The frequency method memory limitations
can be circumvented using algorithmic improvements, how-
ever, below we describe how our “super efficient” algorithm is
efficient in terms of both computation time and memory.

The SEC-C Algorithm
Here, we use several methodological tricks to reduce both the
run time and memory usage when calculating CCCs for the
multistation and multitemplate case of matched filtering of
seismic data using a frequency domain-based method. First,
to reduce the run time and memory overhead required, we
use a “block convolution” procedure (also called “sectioned
convolution”; e.g., Rabiner and Gold, 1975) using the “over-
lap–add” method (e.g., Rabiner and Gold, 1975) to calculate
the sliding dot product using the FFTmethod (i.e., procedure
3). This method is used in signal processing techniques to per-
form the convolution of a long signal with a finite impulse
response filter (e.g., Rabiner and Gold, 1975; Smith, 1997).
The main idea is to divide a long signal into small pieces and
then perform the FFT convolution for each piece. To ensure
accurate calculation of the sliding dot product at the border of
two neighboring pieces there should be an overlap of m − 1
samples between neighboring pieces. If we assume that the
length of each piece is k and if we ignore the recomputation
in areas of overlap, the time complexity for a single trace of the
data then becomes O��n=k��k log k�� � O�n log k�, as we
need to compute (3) for n=k pieces. Here, k becomes a tunable
parameter that should be carefully chosen for optimal perfor-
mance. If k ≪ n (e.g., comparable in size with m), performing
many repetitions (loops) will slow down the process. If k is
large and comparable in size with n then calculating the
FFT for each piece will be time consuming. The optimal value
for k can be determined by trial and error, and depends mainly
on hardware aspects (e.g., CPU cache size and clock speed).
Using a trial and error procedure that we performed using
two different desktop machines, we recommend assigning a
power of two for k (e.g., 212 for one day of 20 Hz data or
213 for one day of 50–100 Hz data) for efficient performance.
However, in all cases we advise running some test cases to find
values of k to optimize the run time.

One other feature of the overlap–add method is that the
template is not required to be padded by zeros to the length
of the data, which for large n can require hundreds of MB of
memory space. Using the shorter waveform pieces of the over-
lap–add method reduces this requirement to padding until the

length of k (equivalent to tens of KB of memory usage if
k � 213). This can result in a large memory savings when
multiple stations and templates are used. The k value can also
be chosen to be very small to minimize memory usage,
although this will come at the expense of increased run times.

The second trick to speed up the template matching is to
use vectorized calculations of sliding dot product for all over-
lap–add pieces instead of looping over these pieces. For exam-
ple, MATLAB has options for vectorized FFT, dot product,
and inverse FFT and therefore the whole procedure of (3)
can be vectorized. For the case of multitemplate matched filter-
ing, the FFTs of the templates can also be calculated in a vec-
torized basis as well.

A third optimization trick is that we apply a very efficient
normalization (i.e., denominator of equation 1) inspired by the
MASS algorithm (Mueen et al., 2015), which we describe be-
low. X · X is a constant and can be precalculated. For calculat-
ing Y i · Y i , we use the following procedures:
1. Calculate the cumulative sum of Y squared and prepend

a zero to it as below:

EQ-TARGET;temp:intralink-;;311;505 Ck�1 �
�Pk

j�1 Y jY j; �1 ≤ k ≤ n�
0; �k � 0�

2. Then, Y i · Y i can be calculated as below:

EQ-TARGET;temp:intralink-;;311;445 Y i · Y i � Ci�m − Ci:

These will give us the denominator of equation (2) with
the time complexity of O�n�. Recent versions of MAT-
LAB (2017a and later) include a built-in function,
movsum, that performs this procedure with a similar time
complexity and run time. movsum returns the sliding
m-points sums of a vector. We use this function for sim-
plicity in the current version of SEC-C. For other pro-
gramming languages and older versions of MATLAB, the
procedure explained above can be used.

The output of the algorithm we describe above is the slid-
ing CCC for the template X and the continuous waveform Y .
The computation has the time complexity of O�n log k�. We
then loop over the stations, components, and templates to cal-
culate the various CCCs required in the multichannel and
multitemplate cases. Along with these required loops, some
of the operations, such as zero padding, reversing, and calculat-
ing FFTs of templates, are performed in a vectorized basis.
SEC-C can output either the CCC for each channel individually
for each template or produce weighted CCC sums of all chan-
nels. For the second option, weightings should be provided
by the user. For more details of the algorithm, we refer to the
MATLAB code provided in the Ⓔ electronic supplement.

SEC-C is a single CPU code that is optimized for seismic
data sets with lengths of approximately one day that can handle
hundreds of channels of data and templates in an efficient run
time. If faster run times are needed, the user can simply paral-
lelize the problem by running SEC-C in parallel for each differ-
ent day of data on each single CPU core of a multicore desktop

4 Seismological Research Letters Volume XX, Number XX – 2018

SRL Early Edition

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220180122/4541826/srl-2018122.1.pdf
by University of California-Riverside, 18446
on 07 November 2018

machine. A toy example of running SEC-C using the
MATLAB parallelized for-loop, parfor, is provided in the
SEC-C GitHub repository (see Data and Resources).

The Fully Normalized Version of the SEC-C Algorithm
The algorithm explained above is based on equation (2) and
includes the assumption that the local mean is removed from
the data and templates. This can be acceptable for most cases
of seismological applications, but in some cases, for example,
when there are sudden large fluctuations in the data, such as
instrument spikes or large nearby earthquakes, this assumption
can be problematic. Most current approaches based on the
assumption that the mean and any spikes are removed from data
(e.g., Beaucé et al., 2018; Chamberlain et al., 2018). Beauce et al.
(2018) indicate that this assumption can affect the results of
CCC calculations for the 2016 Mw 7.8 Kaikōura earthquake
by as much as 1.2%; however, this is an extreme case where there
are large deviations from the mean in the data. Our experiment
on Mount St. Helens seismicity (i.e., a more normal test case)
shows the differences between CCCs calculated by equation (1),
and the SEC-C method with the zero-mean assumption (equa-
tion 2), for a single channel of data are of the order of 10−4

(Fig. 1e).
Because SEC-C is a versatile algorithm, we can make some

simple changes that calculate CCCs based on equation (1)
without the need for simplifying assumptions. Here, we briefly
discuss this implementation.

First, the mean of the templates can be precalculated and
removed. Equation (1) in this case becomes:

EQ-TARGET;temp:intralink-;df4;52;397

CCCi �
X · �Y i − Y i���

�X · X���Y i − Y i� · �Y i − Y i��
q

� �X · Y i� − �X · Y i��
�X · X��Y i · Y i − �2Y i · Y i − Y i · Y i��

q : �4�

There are two extra terms in this equation with respect to equa-
tion (2), X · Ȳ i in the numerator and (2Y i · Ȳ i − Ȳ i · Ȳ i) in
the denominator. Before calculating these two terms, we define
Si as a local sum of Y :

EQ-TARGET;temp:intralink-;df5;52;250Si �
Xi�m

j�i
Y j: �5�

The term X · Ȳ i vanishes as the mean of X is removed. In other
words

EQ-TARGET;temp:intralink-;;52;172

X · Ȳ i � mean�Y i��sum�X�� � ��Si�=m��sum�X��
� ��Si���sum�X�=m� � �Si��mean�X�� � 0:

The extra term in the denominator of equation (4) can be
calculated as below:

EQ-TARGET;temp:intralink-;;52;94 2Y i · Ȳ i− Ȳ i · Ȳ i�2�Si��Si=m�−m�Si=m��Si=m���Si�2=m:

The mean of Y i is simply Si=m · Si can be calculated with
a similar algorithm as that described above for Y i · Y i, or by
using the movsum function in MATLAB, with a linear time
complexity.

After applying these modifications, the run time of
SEC-C increases by less than 1.1% of that of the regular
SEC-C algorithm and in our heaviest test case the run time
is almost the same (Fig. 2a). This is because the cost of com-
puting the mean of the data is borne only once; once the mean
is computed, as many templates as desired can be run at no
additional cost. Because this fully normalized version of
SEC-C removes the sliding mean from the data, it can be used
for raw data (e.g., Ⓔ Fig. S1).

COMPARISONS WITH OTHER APPROACHES

We compare SEC-C with other contemporary methods in
terms of accuracy, speed, and memory efficiency, the main char-
acteristics of any matched filter method. For the accuracy test,
we compare SEC-C with xcorr, a built-in MATLAB function
for calculating CCCs. To test SEC-C in terms of speed and
memory usage, we compare it with two current, recently pub-
lished methods: EQcorrscan (Chamberlain et al., 2018), a fre-
quency domain-based matched filter method and fast matched
filter (FMF; Beaucé et al., 2018), a time domain-based method.

SEC-C Accuracy and Precision, and the Impact of the
Zero-Mean Assumption
To test the accuracy and precision of this method, we applied
the SEC-C algorithm to the seismicity at Mount St. Helens vol-
cano. We select a template waveform from repeating volcanic
earthquake swarms that occurred on 3 December 2005, recorded
in the vertical channel of the seismic station YEL (Fig. 1a). The
high-seismicity rates on this day are related to the dome building
eruption in 2004–2005 at Mount St. Helens. So-called “drum-
beat” earthquakes, repeating events that occur at regular, short
intervals, occurred every 30–300 s during this eruptive episode
(Iverson et al., 2006; Fig. 1b). We calculate the CCC between
our template and a 24-hr-long continuous waveform (the whole
of 3 December) using both SEC-C and a sliding xcorr function
over each window calculated with zero lag (Fig. 1c,d). We re-
moved the sliding mean of the data for each sliding window
prior to calling xcorr for that window. This is a brute force
and therefore very slow method, but it is effective as a reference
method for calculating CCCs precisely and accurately. A com-
parison between the CCC values output by this precise, tradi-
tional method, and the SEC-Cmethod on this identical data set
show that the differences of the results are on the order of 10−4

and 10−15 for the regular and fully normalized versions of
SEC-C, respectively (Fig. 1e), which implies that the fully nor-
malized version of our method is precise to machine precision
and can reproduce the results of traditional methods on the or-
der of machine precision. SEC-C uses double precision for its
calculations, and this, along with the option of removing the
mean for each sliding window, underpins its capacity for
accurate and precise CCC computations.

Seismological Research Letters Volume XX, Number XX – 2018 5

SRL Early Edition

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220180122/4541826/srl-2018122.1.pdf
by University of California-Riverside, 18446
on 07 November 2018

SEC-C Speed
We compare SEC-C with two contemporary codes: one that
computes CCCs in the frequency domain, EQcorrscan v. 0.2.7,
and one that uses the time domain, FMF, in terms of run time
and memory usage. Both the EQcorrscan and FMF methods

use routines compiled in C for calculating CCCs, accompanied
with multithreaded routines and OpenMP (Dagum and
Menon, 1998) loops for parallelization. Both packages have
a wrapper for use in Python; FMF also has a wrapper in MAT-
LAB. We use the fastest version of the correlation backend of

0 5 10 15 20
Time (s)

–2000

–1000

0

1000

2000

A
m

pl
itu

de
 (

co
un

t)

30
Time (min)

–2000

–1000

0

1000

2000

A
m

pl
itu

de
 (

co
un

t)

0

Time (min)

–1

–0.5

0

0.5

1

C
C

C

(a)

(b)

(c)

(d)

(e)

−122°18' −122°15' −122°12' −122°09' −122°06'

46°09'

46°12'

46°15'

YEL

−125°−124°−123°−122°−121°−120°−119°
44°

45°

46°

47°

48°
Seattle

Portland

Mt St. Helens
caldera

(f)
10 20 30

Time(min)

–4

–2

0

2

4

6

C
C

C
(S

E
C

-C
)-

C
C

C
(x

co
rr

)

10-5

10 20 30

10 20 30
Time(min)

–1.5

–1

–0.5

0

0.5

1

1.5

2

C
C

C
(S

E
C

-C
 e

xa
ct

)-
C

C
C

(x
co

rr
)

10-15

20100

▴ Figure 1. (a) A topographic map of the Mount St. Helens volcano area. Inverted triangle shows the location of seismic station YEL. The
dashed circle delimits the caldera, the source of drumbeat seismicity. (b) A “drumbeat” earthquake template waveform recorded on the
vertical-component channel of station YEL. (c) 30 min of seismic data recorded at the same station on 3 December 2004. Box indicates the
template event shown in (b). (d) Cross-correlation coefficient (CCC) function calculated using the traditional sliding window method using
the xcorr function in MATLAB (with the mean of the sliding window removed) for one day of data, note that in this and subsequent plots
we show only a 30 min subset of this CCC function. (e) Difference of CCC calculated with the regular super-efficient cross-correlation
(SEC-C) method (sliding window mean not removed) with the CCC from (d). (f) Same as (e) but for the fully normalized version of SEC-C in
which the mean is removed from each sliding window. The amplitude of (f) shows that the differences between CCC results are ap-
proximately on the order of machine precision (i.e., double precision), indicating the precision of the fully normalized version of the SEC-C
method. The color version of this figure is available only in the electronic edition.

6 Seismological Research Letters Volume XX, Number XX – 2018

SRL Early Edition

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220180122/4541826/srl-2018122.1.pdf
by University of California-Riverside, 18446
on 07 November 2018

EQcorrscan that uses the FFTW library (Frigo
and Johnson, 2005) for the Fourier transform
procedure. We use synthetic data for the com-
parison test generated by test codes accompany-
ing both software packages. We also use the
same synthetic data generated by the FMF test
code to test SEC-C. Our tests are run on a desk-
top machine with an Intel Core i7-4790k CPU
processor that includes four cores (eight
threads) and 16 GB of memory. This is the in-
tended platform (i.e., a desktop computer) for
the current version of the SEC-C method. In
contrast, EQcorrscan can take advantage of
CPU clusters with large memory capacity, and
FMF is designed to take advantage of GPU
hardware where available. Therefore, the com-
parisons stated below do not reflect the capabil-
ities of these methods for their intended cases,
rather they show performance of the methods
when there are limitations in computation
power, memory, or both.

From now on, we demonstrate the matched
filter test cases with a vector with six numbers
indicating the number of days of seismic data,
number of stations, number of components,
sample rate in Hz, template length in seconds,
and number of templates, respectively. In this
case, our test case vector was (1, 10, 3, 50, 8, x).
We tried different values of x by varying the
number of templates from 1 to 40. We cannot
test a greater number of templates as the EQcorr-
scan code exceeds the available memory on our
test machine with more than 40 templates.

To make a clearer comparison between the
speed of SEC-C and the speeds of the other
codes, we run SEC-C using three different strat-
egies: (1) forcing MATLAB to use only one
CPU thread for the computations (hereafter
referred to as the single thread case of SEC-C);
(2) allowing MATLAB to use multithreading
(i.e., the use of multiple CPU threads) for
some built-in functions that are optimized for
it (the regular case of SEC-C); and (3) running
multiple single thread instances of SEC-C inde-
pendently and simultaneously in parallel (the
parallelized case of SEC-C). For strategy (3), if
the number of stations is sufficiently small, one
day of data can be run per CPU thread; if not,
and if memory limitations become an issue, each
day of data can be divided by the number of
threads into equally sized smaller subsets, with
an appropriate overlap that takes moveout into
account.

Figure 2 demonstrates the results for our
speed test. We find that SEC-C's performance
is on average∼2, 4, and 6 times faster than FMF

0 5 10 15 20 25 30 35 40

Number of templates

100

101

102

103

R
un

 ti
m

e
(s

)

FMF
EQcorrscan fftw
SEC-C single thread
SEC-C exact multithread
SEC-C multithread
SEC-C parallelized (4 threads)

0 5 10 15 20 25 30 35 40

Number of templates

1

2

3

4

5

6

7

8

9

M
em

or
y

(G
B

)

EQcorrscan
FMF
SEC-C

(a)

(b)

▴ Figure 2. (a) Matched filter run time comparison between SEC-C, the fully nor-
malized version of SEC-C, EQcorrscan, and fast matched filter (FMF), performed on a
desktop machine with a quad-core (Intel i7-4790) processor. SEC-C run time is re-
ported for three different computation strategies: SEC-C single thread (all compu-
tations run on a single central processing unit [CPU] thread), SEC-C multithread
(a single instance of SEC-C, but with some MATLAB functions using multithreading
in the background) and a parallelized case of SEC-C, in which four single thread
instances are run on a quarter of the data set each at the same time. The test case
data set includes one day of data for 10 stations, each with three components, with a
50 Hz sample rate and a template length of 8 s. The run time is plotted on a log scale
versus the number of templates on a linear scale. We consider only the CCC sum
procedure for the comparison and therefore run time does not include the loading of
data or preprocessing, such as median absolute deviation (MAD) calculation or de-
tection. The comparison shows that SEC-C would be the best choice to run the
matched filter procedure on a desktop computer as it is 2–6 times faster than other
contemporary methods, depending on the computational resources used. The speed
of the fully normalized version of SEC-C is almost equal to that of regular SEC-C for
higher numbers of templates, indicating that in such cases, fully normalized SEC-C
would be the better choice as it does not significantly increase the run time.
(b) Matched filter peak memory usage comparison between SEC-C, EQcorrscan,
and FMF for the same test case in (a). Memory overhead is measured by monitoring
the memory usage during each run using the htop command. For all of the test cases,
SEC-C has the lowest memory usage, using approximately 2–3 times less memory
than EQcorrscan, and 20%–30% less memory than FMF. The trend of memory usage
with increasing numbers of templates suggests that for large numbers of templates
(> 70), FMF will be more memory efficient than SEC-C, as expected for a time-domain
code. The color version of this figure is available only in the electronic edition.

Seismological Research Letters Volume XX, Number XX – 2018 7

SRL Early Edition

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220180122/4541826/srl-2018122.1.pdf
by University of California-Riverside, 18446
on 07 November 2018

for the three SEC-C strategies explained above, respectively.
Because FMF makes use of multithreading to gain computa-
tion speed, a second test on a machine with an Intel Core
i5 processor (four cores, four threads) was ~8 times slower than
the regular case of SEC-C for the same test vector (Ⓔ Fig. S2).
Overall, assuming limited computational resources such as a
desktop computer, the strength of the SEC-C algorithm with
respect to FMF is when the template length is large (e.g.,
> 5 s), the number of stations and components is also large
(e.g., > 30 channels), and when higher sample rates (e.g.,
> 50 Hz) are needed. If the use case involves templates with
short lengths (e.g., a few seconds) and uses data with lower
sample rates (e.g., 20 Hz), then FMF becomes more effective
with respect to SEC-C. Also, if the data do not involve higher
frequency content, the step feature in FMF, which calculates
CCCs at regular sample steps, rather than for every sample,
can be used to speed up the computation. However, this comes
at the expense of potentially degraded matching performance
and/or lower peak CCC values, especially when the step size
is bigger than the shortest period used. As mentioned above,
SEC-C can be effectively parallelized by running multiple
instances on different CPU threads for enhanced performance,
whereas FMF makes use of all CPU resources for a single run.

Although the memory efficiency tweaks that we have
made in SEC-C trade-off with computation speed, our run
test mentioned above shows that SEC-C runs approximately
twice as fast with respect to EQcorrscan when both are using
a single thread (Fig. 2a). Memory issues with EQcorrscan did
not allow us to perform our test case using the parallelized
version of EQcorrscan; however, our tests with fewer templates
(less than 5) show that the run time of the parallelized version
of EQcorrscan is slightly longer compared with the parallelized
version of SEC-C (i.e., strategy 3 mentioned above). Overall, as
the number of processes increases (e.g., increasing sample rate,
number of stations, number of templates), the speed of SEC-C
with respect to EQcorrscan increases.

Here, we give two more examples that show the relative
efficiency of SEC-C with respect to other contemporary codes
in terms of speed. Beaucé et al. (2018) reported the run time
for a matched filter with the test vector (1, 12, 3, 50, 8, 20)
while running the test using 24 CPU cores for EQcorrscan and
FMF with one sample step (i.e., on all samples). EQcorrscan
finished this test in 15.8 s, compared with 55.5 s for FMF.
We run the same test using SEC-C on a single CPU thread
on the desktop PC mentioned above, completing it in 88 s.
This indicates that the single thread case of SEC-C has run
times on the order of EQcorrscan and FMF running on multi-
ple threads. The run time of the regular case of SEC-C (i.e.,
strategy 2 from above) is 49 s for this test. In another study, Mu
et al. (2017) reported a test case vector of (1, 1, 1, 100, 2.56, 18)
that finished in 2.97 s using the most CPU efficient and paral-
lelized version of their matched filter code (the C2 method) run-
ning on 18 processor cores. SEC-C can complete this test case,
again using one CPU thread on the same desktop machine men-
tioned above, in 5.45 s. Both FMF and the method of Mu et al.
(2017) are GPU optimized and their GPU implementations can

run much faster than their reported runtimes for CPU clusters.
However, the examples and tests above highlight the efficiency
of SEC-C when the computational resources are limited (e.g.,
few CPU cores and no available GPU, such as may be available
on a desktop computer or laptop).

SEC-C Memory Efficiency
The strength of the SEC-C method compared with time-
domain CPU codes is the run time speed. However, compared
with other frequency domain methods (e.g., EQcorrscan), its
strength is its memory efficiency. Here, we test the memory
usage of SEC-C with respect to FMF and EQcorrscan while
running a test with the case vector of (1, 10, 3, 50, 8, 30). We
monitor the memory usage of these three methods using the
htop (see Data and Resources) command. We compare the
peak of memory usage before and during the runs. We find
that the peak memory usage of EQcorrscan was 6.9 GB, com-
pared with 2.95 GB for FMF and only 2.31 GB for SEC-C
(Fig. 2b). The memory usage corresponding to the input
and output data in this test case adds up to ∼2 GB. This shows
that our memory-based implementation made SEC-C even
more efficient than time-domain methods (e.g., in this case
FMF uses ∼0:64 GB more memory than SEC-C). Peak
memory usage estimated in this way for a range of numbers
of templates (between 1 and 40) is shown in Figure 2b. For
all of the test cases, SEC-C has the lowest memory usage, using
approximately 2–3 times less memory than EQcorrscan, and
20–30% less memory than FMF. The trend of memory usage
with increasing numbers of templates suggests that for large
numbers of templates (> 70), FMF will be more memory
efficient than SEC-C, as expected for a time-domain code.

One more example that demonstrates the strength of the
SEC-C method with respect to the other methods is when
applying a matched filter to a large array of seismic stations,
for example, with a test vector of (1, 60, 3, 50, 10, 10). Using
a regular desktop or even a small cluster, it is not possible
to achieve this efficiently using a time-domain method (e.g.,
FMF). To avoid memory problems when using a regular
frequency domain method (e.g., EQcorrscan), the user must
divide the data into smaller subsets with smaller n and loop
over those subsets. The additional disk read and write opera-
tions when loading data subsets and saving the results could
potentially be more time consuming compared with a case
where the matched filtering can be completed in one process.
SEC-C can complete the example above with the test case
mentioned above in approximately two minutes on our test
machine. SEC-C can perform matched filtering of up to a test
case of (1, 110, 3, 50, 10, 1) without a memory problem and in
a similarly efficient time (i.e., less than a minute) using the
same desktop machine.

EXAMPLE APPLICATIONS OF THE SEC-C
ALGORITHM

SEC-C is a versatile method that can be used for speeding up
detection of any similar seismic events, for example, REs, LFEs,

8 Seismological Research Letters Volume XX, Number XX – 2018

SRL Early Edition

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220180122/4541826/srl-2018122.1.pdf
by University of California-Riverside, 18446
on 07 November 2018

triggered earthquakes, swarms of nonvolcanic or volcanic
earthquakes, foreshocks, and aftershock sequences. We show
two examples of these applications.
1. Detection of LFEs: Here, we present an example to show

how this method can help us in the rapid detection of LFEs.
We searched for LFEs in waveform data from a tremor
burst that occurred on 6 October 2007 on the San Andreas
fault near Parkfield, California (Fig. 3a), in which many
LFEs were detected by template matching (Shelly et al.,
2009). We select an LFE template waveform for each sta-
tion (Fig. 3b) by stacking matrix profiles (a measure of
waveform self-similarity) from 24 hrs of data spanning the
tremor burst from three borehole stations of the high-
resolution seismic network (HRSN) in the Parkfield area.

(For full details of this procedure and of the matrix profile
method, see Zhu et al., 2016, 2018.)

We then use the SEC-C method to calculate CCC func-
tions for five HRSN stations and sum these CCC func-
tions, aligning them by accounting for the differential
arrival time (i.e., moveouts) for the template at each station
(i.e., using the S-wave envelope peak). We then use the
threshold of eight times of median absolute deviation
(MAD, e.g., Shelly et al., 2007, 2009). Figure 3c shows the
sum of CCC functions for five stations and the threshold.
In general, the temporal pattern of detected event origin
times (Fig. 3d) is consistent with the results of Shelly et al.
(2009; Fig. 2a); any differences in detail can be attributed to

0 5 10 15 20 25 30 35 40
Time (s)

FROB

JCNB

VCAB

CCRB

SMNB

1 2 3 4 5 6 7 8

Time (104 s)

Time (104 s)

-5

-3

0

3

5

C
C

C
 s

um

−120°36' −120°24' −120°12'

35°36'

35°48'

36°00'

FROB

JCNB

SMNB

CCRB
VCAB

PGH

Parkfield

Cholame

−123° −122° −121° −120° −119°
34°

35°

36°

37°

38°

Santa Barbara

San Francisco

(a)

(c)

(b)

(d)

N
um

be
r

of
 L

F
E

S

▴ Figure 3. (a) A map of the San Andreas fault area near Parkfield, California. Inverted triangles are the locations of Parkfield high-
resolution seismic network (HRSN) stations that are used in this study to search for low-frequency earthquakes (LFEs), regular triangle is
station PGH from the Northern California Seismic Network (NCSN) used to search for repeating earthquakes (REs), the star is the location
of a family of REs (see Fig. 3c), and the ellipse shows the approximate locations of the LFEs detected by Shelly et al. (2009). (b) Waveforms
from HRSN seismic stations showing our LFE template (indicated by dashed lines). The waveforms are arranged from top to bottom based
on their stations’ approximate distance to the source (i.e., most to least distant, respectively). (c) Sum of the CCC functions from the five
HRSN stations calculated using the template shown in (b) and the SEC-C method, for waveforms from 6 October 2007 (UTC). The horizontal
line is the detection threshold we use, eight times the MAD, based on Shelly et al. (2007). (d) A histogram of LFEs detected using the SEC-C
method and our template. Although we used a different method, our results (i.e., detection times and number of detections) broadly agree
with those of Shelly et al. (2009; their fig. 2). The color version of this figure is available only in the electronic edition.

Seismological Research Letters Volume XX, Number XX – 2018 9

SRL Early Edition

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220180122/4541826/srl-2018122.1.pdf
by University of California-Riverside, 18446
on 07 November 2018

the different network configurations used, and the recursive
matched filter process used in the earlier study.
In this example, the test case vector is (1, 5, 1, 20, 5, 1) and
the regular case of SEC-C can complete it in 0.21 s.
For the 50 and 100 Hz cases, run time increases to 0.54 and
1.38 s, respectively. Assuming that this computation time
would scale linearly with the number of days of data
searched, performing the same procedure for one year of
continuous data would take between∼77 and 504 s depend-
ing on the sample rate. To test this hypothesis, we use the
parallelized case of SEC-C on 365 days of data, with each of
eight CPU threads on our test machine running a single
thread instance of SEC-C on one day of data at a time,
simultaneously. The run time for this case, including loading
data, running SEC-C, and saving the output for the 20 and
100 Hz cases took 81 and 423 s, respectively, using our desk-
top test machine. This shows how this method could greatly
expedite searches for repeating seismic events in continuous
waveform data if suitable event templates are known.

2. Detection of REs from individual detected catalog events:
Along with the acceleration of template matching in con-
tinuous seismic data, one main strength of the SEC-C
method is that it can be applied to template matching
among individual waveforms from previously detected
events. Here, we show one example: searching for REs
in central California near Parkfield. For this purpose, we
compared the performance of SEC-C with that of the
xcorr function, as the latter in this case is an efficient
way of calculating CCC functions (i.e., CCC as a function
of lag time) for the individual event waveforms. The maxi-
mum lag (in terms of number of samples) that the CCC
function needs to be calculated over depends on the errors
in the seismogram phase information (e.g., P arrival pick),
which are typically of the order of 1–2 s, multiplied by the
sample rate. In this section, we use a brute force traditional
method using the MATLAB cross-correlation routine
xcorr, in which individual waveforms are compared with
each other one-by-one, via two nested loops, as a compari-
son to the SEC-C method.
Our run time tests show that the SEC-C method can
accelerate the search for REs by up to a factor of 15.5 faster
than the traditional method, depending on the number of
individual candidate events we start with.
To make use of the SEC-C method to search for REs
in a set of individual event waveforms, we must first con-
catenate these event waveforms together to form one
continuous waveform. The SEC-C method can then be
used to compute cross correlations between this continuous
waveform and a template waveform as described above.
Although SEC-C is fast at computing CCCs, as we dem-
onstrate above, many of the CCCs calculated in this case
are not necessary for the detection process. The unnecessary
CCC calculations result from our concatenated waveform
effectively having a large number of artificial waveforms
(or waveform chimeras) composed of parts of pairs of
neighboring waveforms. For example, if we have two event

waveforms, A and B, and concatenate them, the SEC-C
method would calculate the CCC between the template
and a waveform window containing the second half of
event A and the first half of event B (Fig. 4a). The resulting
calculated value would be a scientifically meaningless quan-
tity, and in the traditional method we would not compute
it. A great many of the CCCs computed using SEC-C
in this setup would be of this unnecessary type. Because
we would not expend computing resources to compute
these meaningless cross correlations under the traditional
method, preferring instead to search for a small range of
plausible time shifts within the target waveform, the differ-
ential in computation time between the two methods is
greatly reduced for this application compared with scanning
a continuous waveform, but we still obtain faster run times
using SEC-C, as we document below.
Our experiments in searching for REs near Parkfield

(Figs. 3a and 4a,b) show that the search for REs using the
SEC-C algorithm is more than one order of magnitude faster
than the traditional method. We use for this demonstration trig-
gered event data from the Northern California Seismic Network
station PGH (Fig. 3a) that has historically high signal-to-noise
ratios and also a long period of operation (1987–present).
We retrieve event waveforms from this station, targeting events
whose catalog locations are within a small area in Parkfield where
the occurrence of REs is expected (e.g., Lengliné and Marsan,
2009; Nadeau, 2014). In total, we perform 14,399,661 pairwise
CCC calculations for 5366 waveforms that are band-pass filtered
between 1 and 15 Hz, with 100 Hz sample rate and with 10 s
duration. We find 284 candidate RE families, each having more
than three events in a family with CCCs greater than or equal to
0.95 between their pairs. The family with the largest number of
repeats has 49 events in total. Figure 3b shows an example of a
RE family with 18 recurrences since 1987 detected by SEC-C.
The first five sequences of this family reoccurred regularly before
the 2004Mw 6.0 Parkfield earthquake with a recurrence interval
of 3:5� 0:3 yrs. The sequences triggered by the 2004 event had
recurrence intervals that were shortened to hours in its immedi-
ate aftermath and eventually, following a typical Omori–Utsu
law, recovered to their original recurrence intervals from before
the 2004 mainshock in a period of ∼7 yrs.

The new method improves the computation time for
searching for REs from around one-and-a-half hours under
the traditional approach to less than seven minutes using
SEC-C on our desktop test machine. To compare the run
times between the two methods, we run multiple tests on each
using a series of differently sized random subsets of these wave-
forms. On average, we find the SEC-C method is 12.1 times
faster than the traditional, looped CCC method (see Fig. 4a).
The speed-up factor stays above ∼11 for all the subset sizes we
test. We have started to apply the SEC-C code to large scale
seismic applications, such as mining a large seismic data set (i.e.,
including 40; 000� events, 300� stations, 600; 000� event
waveforms) to search for REs in northern California (Funning
et al., 2017). Although a discussion of the results of that work is
beyond the scope of this study, we found that the entire

10 Seismological Research Letters Volume XX, Number XX – 2018

SRL Early Edition

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220180122/4541826/srl-2018122.1.pdf
by University of California-Riverside, 18446
on 07 November 2018

process, including data downloading and preprocessing,
computation of the waveform comparisons and clustering of
the results, could be completed in one week using the same
desktop machine.

CONCLUSIONS

We use a combination of different algorithm improvements
such as FFT convolution, the overlap–add method, vectoriza-
tion, and fast normalization to produce an accurate sliding
CCC algorithm with zero-lag that is inexpensive to compute
for large seismic data sets. This method, which we call SEC-C,

is usable for many time series applications that require efficient
computation of cross correlations, including various seismo-
logical applications such as detecting REs, foreshocks, after-
shocks, LFEs, etc. SEC-C is a seismic cross-correlation package
that can leverage a regular desktop machine and make it a
powerful tool that can handle demanding matched filter proj-
ects. The MATLAB code is available in the Ⓔ electronic sup-
plement and it is also available, along with a Python version,
from our GitHub repository. An example of performing
template matching that includes retrieving, prepossessing,
performing template matching using SEC-C, and postprocess-
ing results is also included in the GitHub repository, for new

(a) (b)

0 5 10 15 20
–40
–20

0
20
40

0 5 10 15 20 25 30 35

–50

0

50

0 5 10 15 20
Time (s)

–0.2

0

0.2

C
C

C
Template

A B

(c)

0 2 4 6 8 10 12 14 16 18
Time (s)

1989–06–23 1.13

1993–04–24 1.24

1996–12–20 1.38

2000–03–14 1.28

2003–05–20 1.25

2004–09–28 1.32

2004–09–29 1.36

2004–10–01 1.43

2004–10–06 1.30

2004–10–14 1.30

2004–10–26 1.32

2004–12–19 1.26

2005–03–02 1.36

2005–08–28 1.43

2006–10–04 1.48

2008–06–01 1.42

2011–04–06 1.27

2014–12–16 1.19
Date Magnitude

0 1000 2000 3000 4000 5000 6000
Number of events

0

20

40

60

80

100

R
un

 ti
m

e
(m

in
)

SEC-C method
Traditional method

▴ Figure 4. (a) An example shows how we use the SEC-C method to calculate CCCs for individual event waveforms. From top to bottom: a
template, concatenated waveforms A and B, and CCC between the template and the concatenated waveform. Portions of the CCC func-
tion indicated by double-headed arrows are the scientifically useful calculated CCCs and the remainder the unnecessary CCCs calculated
in this process. Dashed lines indicate the CCC when the template is aligned with A and B based on P-arrival phase information. The
majority of CCC calculations are unnecessary (more than 83%). (b) Computational time comparison between SEC-C method and the
traditional method of searching for REs in different data sets containing different numbers of events. Both of these methods show com-
putation time proportional to the square of the number of events, n (i.e., O�n2�). This comparison shows that the SEC-C method is 10.8–15.5
times faster for data sets ranging from hundreds to thousands of events and has a mean improvement of 12.1 times faster in general.
(c) One example of a RE family detected by the SEC-C method using waveform data from seismic station PGH (see Fig. 3a for locations of
the RE family and PGH). The color version of this figure is available only in the electronic edition.

Seismological Research Letters Volume XX, Number XX – 2018 11

SRL Early Edition

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220180122/4541826/srl-2018122.1.pdf
by University of California-Riverside, 18446
on 07 November 2018

users with low-computational resources. We test this method
on several different seismic data sets at a range of sample rates
and compare it with other CPU-based contemporary methods.
Our tests reveal that SEC-C is not only accurate to machine
precision (i.e., double precision), but also it is the most efficient
in terms of speed and memory usage. SEC-C can efficiently
calculate the CCC sum and can also save the individual CCCs
for each channel without introducing extra cost in terms of
speed. Despite calculating many unnecessary CCCs, searching
for repeating seismic events in a set of individual event wave-
forms using the SEC-Cmethod shows a speed improvement of
more than one order of magnitude on average for sets of hun-
dreds to thousands of waveforms with respect to regular pair-
wise CCC calculations. This will reduce the run time required
for performing pairwise cross correlation of several thousands
of events from hours to minutes using a regular desktop
machine

Our development of the SEC-C method is part of an on-
going effort for speeding up seismic cross-correlation analysis.
We plan to continue our time and memory optimization for
SEC-C in future through, for example, producing versions in
lower level programming languages (e.g., C++) and exploring
the possibility of parallelization, both for CPUs and GPUs.

DATA AND RESOURCES

We retrieved the seismic data for stations near Mount St. Hel-
ens and Parkfield from the Incorporated Research Institutions
for Seismology Data Management Center (IRIS-DMC) using
the IRISFETCH MATLAB software that can be downloaded
from http://ds.iris.edu/ds/nodes/dmc/software/downloads/
irisFetch.m (last accessed July 2018). We managed the seismic
data (e.g., filtering, merging, visualizing, etc.) using the MAT-
LAB signal processing toolbox and Seismic Analysis Code
(SAC, https://ds.iris.edu/files/sac-manual/, last accessed
March 2018). Some figures were made using the Generic Map-
ping Tools (GMT, http://gmt.soest.hawaii.edu/, last accessed
March 2018; Wessel et al., 2013; last accessed March 2018). We
used EQcorrscan v. 0.2.7 (https://eqcorrscan.readthedocs.io/
en/latest/; last accessed July 2018) and fast matched filter
(FMF; https://github.com/beridel/fast_matched_filter; last
accessed July 2018) for our speed and memory comparison tests.
GitHub repository is available at https://github.com/Naderss/
SEC_C (last accessed September 2018). htop command is avail-
able at https://hisham.hm/htop/ (last accessed October 2018).
MATLAB is available at www.mathworks.com/products/
matlab (last accessed March 2018).

ACKNOWLEDGMENTS

This study was supported by U.S. Geological Survey (USGS)
Award G16AP00034. N. S. S. acknowledges additional
support from a National Aeronautics and Space Administra-
tion (NASA) Earth and Space Science Fellowship, Award
NNX15AM66H. The authors would like to thank Editor-
in-Chief Zhigang Peng, William Frank, and one anonymous

reviewer for their helpful comments and useful criticisms that
have led us to improve both our algorithm and our article.

REFERENCES

Allstadt, K., and S. D. Malone (2014). Swarms of repeating stick-slip
icequakes triggered by snow loading at Mount Rainier volcano,
J. Geophys. Res. 119, no. 5, 1180–1203.

Beaucé, E.,W. B. Frank, and A. Romanenko (2018). Fast matched filter
(FMF): An efficient seismic matched-filter search for both CPU
and GPU architectures, Seismol. Res. Lett. 89, no. 1, 165–172.

Brown, J. R., G. C. Beroza, and D. R. Shelly (2008). An autocorrelation
method to detect low frequency earthquakes within tremor, Geo-
phys. Res. Lett. 35, no. 16, doi: 10.1029/2008GL034560.

Chamberlain, C. J., C. J. Hopp, C. M. Boese, E. Warren-Smith, D. Cham-
bers, S. X. Chu, K. Michailos, and J. Townend (2018). EQcorrscan:
Repeating and near-repeating earthquake detection and analysis in
python, Seismol. Res. Lett. 89, no. 1, 173–181.

Dagum, L., and R. Menon (1998). OpenMP: An industry-standard API
for shared-memory programming, IEEE Comput. Sci. Eng. 5, no. 1,
46–55, doi: 10.1109/99.660313.

Frank, W. B., and N. M. Shapiro (2014). Automatic detection of low-
frequency earthquakes (LFEs) based on a beamformed network
response, Geophys. J. Int. 197, no. 2, 1215–1223.

Frank,W. B., P. Poli, and H. Perfettini (2017). Mapping the rheology of
the Central Chile subduction zone with aftershocks, Geophys. Res.
Lett. 44, doi: 10.1002/2016GL072288.

Frigo, M., and S. G. Johnson (2005). The design and implementation of
FFTW3, Proc. IEEE 93, no. 2, 216–231.

Funning, G., N. Shakibay Senobari, and J. L. Swiatlowski (2017).
Distribution of creep in the northern San Francisco Bay Area
illuminated by repeating earthquakes and InSAR, Abstract
T21A-0542 presented at 2017 Fall Meeting, AGU, New Orleans,
Louisiana, 11–15 December.

Gibbons, S. J., and F. Ringdal (2006). The detection of low magnitude
seismic events using array-based waveform correlation, Geophys. J.
Int. 165, no. 1, 149–166.

Hauksson, E., and P. Shearer (2005). Southern California hypocenter
relocation with waveform cross-correlation, part 1: Results using
the double-difference method, Bull. Seismol. Soc. Am. 95, no. 3,
896–903.

Hutko, A. R., M. Bahavar, C. Trabant, R. T. Weekly, M. Van Fossen, and
T. Ahern (2017). Data products at the IRIS-DMC: Growth and
usage, Seismol. Res. Lett. 88, no. 3, 892–903.

Iverson, R. M., D. Dzurisin, C. A. Gardner, T. M. Gerlach, R. G. LaHu-
sen, M. Lisowski, S. D. Malone, J. A. Messerich, S. C. Moran, and J.
S. Pallister (2006). Dynamics of seismogenic volcanic extrusion at
Mount St Helens in 2004-05, Nature 444, no. 7118, 439.

Kato, A., J. I. Fukuda, S. Nakagawa, and K. Obara (2016). Foreshock
migration preceding the 2016 Mw 7.0 Kumamoto earthquake,
Japan, Geophys. Res. Lett. 43, no. 17, 8945–8953.

Lengliné, O., and D. Marsan (2009). Inferring the coseismic and
postseismic stress changes caused by the 2004 Mw � 6 Parkfield
earthquake from variations of recurrence times of microearthquakes,
J. Geophys. Res. 114, no. B10303, doi: 10.1029/2008JB006118.

Lewis, J. P. (1995). Fast Template Matching, in Vision Interface 95,
Canadian Image Processing and Pattern Recognition Society, Quebec
City, Canada, 15–19 May, 120–123.

Meng, X., and Z. Peng (2014). Seismicity rate changes in the Salton Sea
geothermal field and the San Jacinto fault zone after the 2010
Mw 7.2 El Mayor-Cucapah earthquake, Geophys. J. Int. 197, no. 3,
1750–1762.

Meng, X., X. Yu, Z. Peng, and B. Hong (2012). Detecting earthquakes
around Salton Sea following the 2010 Mw 7. 2 El Mayor-Cucapah
earthquake using GPU parallel computing, Proc. Comput. Sci. 9,
937–946.

12 Seismological Research Letters Volume XX, Number XX – 2018

SRL Early Edition

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220180122/4541826/srl-2018122.1.pdf
by University of California-Riverside, 18446
on 07 November 2018

http://ds.iris.edu/ds/nodes/dmc/software/downloads/irisFetch.m
http://ds.iris.edu/ds/nodes/dmc/software/downloads/irisFetch.m
http://ds.iris.edu/ds/nodes/dmc/software/downloads/irisFetch.m
http://ds.iris.edu/ds/nodes/dmc/software/downloads/irisFetch.m
http://ds.iris.edu/ds/nodes/dmc/software/downloads/irisFetch.m
https://ds.iris.edu/files/sac-manual/
http://gmt.soest.hawaii.edu/
https://eqcorrscan.readthedocs.io/en/latest/
https://eqcorrscan.readthedocs.io/en/latest/
https://github.com/beridel/fast_matched_filter
https://github.com/Naderss/SEC_C
https://github.com/Naderss/SEC_C
https://hisham.hm/htop/
http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab
http://dx.doi.org/10.1029/2008GL034560
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1002/2016GL072288
http://dx.doi.org/10.1029/2008JB006118

Mu, D., E. J. Lee, and P. Chen (2017). Rapid earthquake detection through
GPU-Based template matching, Comput. Geosci. 109, 305–314.

Mueen, A., K. Viswanathan, C. K. Gupta, and E. Keogh (2015). The
Fastest Similarity Search Algorithm for Time Series Subsequences under
Euclidean Distance, available at http://www.cs.unm.edu/~mueen/
FastestSimilaritySearch.html (last accessed March 2018).

Nadeau, R. M. (2014) Parkfield borehole network (HRSN): Activities:
(SOH using similar and repeating events, and efforts in support of
SAFOD), Annual Rept. 2013–2014, Berkeley Seismological
Laboratory, Berkeley, California.

Nadeau, R. M., W. Foxall, and T. V. McEvilly (1995). Clustering and
periodic recurrence of microearthquakes on the San Andreas fault
at Parkfield, California, Science 267, 503–507.

Peng, Z., and P. Zhao (2009). Migration of early aftershocks following
the 2004 Parkfield earthquake, Nature Geosci. 2, no. 12, 877.

Poupinet, G.,W. L. Ellsworth, and J. Frechet (1984). Monitoring velocity
variations in the crust using earthquake doublets: An application
to the Calaveras fault, California, J. Geophys. Res. 89, no. B7,
5719–5731.

Rabiner, L. R., and B. Gold (1975). Theory and Application of Digital
Signal Processing, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
777 pp.

Schaff, D. P., and G. C. Beroza (2004). Coseismic and postseismic
velocity changes measured by repeating earthquakes, J. Geophys.
Res. 109, no. B10, doi: 10.1029/2004JB003011.

Schaff, D. P., and F. Waldhauser (2005). Waveform cross-correlation-based
differential travel-time measurements at the Northern California Seis-
mic Network, Bull. Seismol. Soc. Am. 95, no. 6, 2446–2461.

Schaff, D. P., and F. Waldhauser (2010). One magnitude unit reduction
in detection threshold by cross correlation applied to Parkfield
(California) and China seismicity, Bull. Seismol. Soc. Am. 100,
no. 6, 3224–3238.

Shelly, D. R. (2017). A 15-year catalog of more than 1 million low-
frequency earthquakes: Tracking tremor and slip along the deep
San Andreas Fault, J. Geophys. Res. 122, no. 5, 3739–3753, doi:
10.1002/2017JB014047.

Shelly, D. R., G. C. Beroza, and S. Ide (2007). Non-volcanic tremor and
low-frequency earthquake swarms, Nature 446, no. 7133, 305.

Shelly, D. R., W. L. Ellsworth, T. Ryberg, C. Haberland, G. S. Fuis, J.
Murphy, R. M. Nadeau, and R. Bürgmann (2009). Precise location
of San Andreas fault tremors near Cholame, California using
seismometer clusters: Slip on the deep extension of the fault?,
Geophys. Res. Lett. 36, no. 1, doi: 10.1029/2008GL036367.

Skoumal, R. J., M. R. Brudzinski, and B. S. Currie (2015). Distinguishing
induced seismicity from natural seismicity in Ohio: Demonstrating
the utility of waveform template matching, J. Geophys. Res. 120,
no. 9, 6284–6296.

Smith, S. W. (1997). The Scientist and Engineer’s Guide to Digital Signal
Processing, CaliforniaTechnical Pub., San Diego, California, 626 pp.

Thomas, A. M., R. Bürgmann, D. R. Shelly, N. M. Beeler, and M. L.
Rudolph (2012). Tidal triggering of low frequency earthquakes
near Parkfield, California: Implications for fault mechanics within
the brittle-ductile transition, J. Geophys. Res. 117, no. B5, doi:
10.1029/2011JB009036.

Tkalčić, H., M. Young, T. Bodin, S. Ngo, and M. Sambridge (2013). The
shuffling rotation of the Earth’s inner core revealed by earthquake
doublets, Nature Geosci. 6, no. 6, 497.

Waldhauser, F., and W. L. Ellsworth (2000). A double-difference
earthquake location algorithm: Method and application to the
northern Hayward fault, California, Bull. Seismol. Soc. Am. 90,
no. 6, 1353–1368.

Wessel, P., W. H. Smith, R. Scharroo, J. Luis, and F. Wobbe (2013).
Generic mapping tools: Improved version released, Eos Trans.
AGU 94, no. 45, 409–410.

Zhang, H., and C. H. Thurber (2003). Double-difference tomography:
The method and its application to the Hayward fault, California,
Bull. Seismol. Soc. Am. 93, no. 5, 1875–1889.

Zhu, Y., Z. Zimmerman, N. S. Senobari, C. C. M. Yeh, G. Funning, A.
Mueen, P. Brisk, and E. Keogh (2016). Matrix profile II: Exploiting
a novel algorithm and GPUs to break the one hundred million
barrier for time series motifs and joins, Data Mining (ICDM),
2016 IEEE 16th International Conference, 739–748.

Zhu, Y., Z. Zimmerman, N. S. Senobari, C. C. M. Yeh, G. Funning, A.
Mueen, P. Brisk, and E. Keogh (2018). Exploiting a novel algorithm
and GPUs to break the ten quadrillion pairwise comparisons barrier
for time series motifs and joins, Knowl. Inf. Sys. 54, 1–34, doi:
10.1007/s10115-017-1138-x.

Nader Shakibay Senobari
Gareth J. Funning

Eamonn Keogh
Yan Zhu

Chin-Chia Michael Yeh
Zachary Zimmerman

University of California, Riverside
900 University Avenue

Riverside, California 92521 U.S.A.
nshak006@ucr.edu

Abdullah Mueen
University of New Mexico

Albuquerque, New Mexico 87131 U.S.A.

Published Online 7 November 2018

Seismological Research Letters Volume XX, Number XX – 2018 13

SRL Early Edition

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220180122/4541826/srl-2018122.1.pdf
by University of California-Riverside, 18446
on 07 November 2018

http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
http://dx.doi.org/10.1029/2004JB003011
http://dx.doi.org/10.1002/2017JB014047
http://dx.doi.org/10.1029/2008GL036367
http://dx.doi.org/10.1029/2011JB009036
http://dx.doi.org/10.1007/s10115-017-1138-x

